Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.023
Filtrar
1.
Food Chem ; 448: 139073, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574713

RESUMO

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Assuntos
Ácido Ascórbico , Biofilmes , Escherichia coli , Ácido Gálico , Ácido Gálico/análogos & derivados , Luz , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Ácido Gálico/farmacologia , Ácido Gálico/química , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Plâncton/efeitos dos fármacos , Plâncton/efeitos da radiação , 60440
2.
J Zhejiang Univ Sci B ; 25(4): 293-306, 2024 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38584092

RESUMO

The oyster mushroom (Pleurotus spp.) is one of the most widely cultivated mushroom species globally. The present study investigated the effect of synbiotics on the growth and quality of Pleurotus ostreatus and Pleurotus pulmonarius. Different synbiotics formulations were applied by spraying mushroom samples daily and measuring their growth parameters, yield, biological efficiency, proximate composition, mineral content, total phenolic content (TPC), and diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity. Results demonstrated that the most significant yield of oyster mushrooms was harvested from synbiotics sprayed with inulin and Lactobacillus casei (56.92 g). Likewise, the highest biological efficiency obtained with a similar synbiotic was 12.65%. Combining inulin and L. casei was the most effective method of improving the mushrooms' growth performance and nutrient content in both samples. Furthermore, synbiotics that combined inulin and L. casei resulted in the highest TPC (20.550 mg gallic acid equivalent (GAE)/g dry extract (DE)) in white oyster mushrooms (P. ostreatus). In comparison, in grey mushroom (P. pulmonarius) the highest TPC was yielded by L. casei (1.098 mg GAE/g DE) followed by inulin and L. casei (1.079 mg GAE/g DE). The DPPH results indicated that the oyster mushroom could be an efficient antioxidant. The results revealed that applying synbiotics improved the mushrooms' quality by increasing their antioxidant capacity with higher amounts of phenolic compounds and offering better health benefits with the increased levels of mineral elements. Together, these studies demonstrated the potential of using synbiotics as a biofertilizer, which is helpful for mushroom cultivation; therefore, it might solve the challenge of inconsistent quality mushroom growers face.


Assuntos
Pleurotus , Simbióticos , Pleurotus/química , Antioxidantes , Inulina , Fenóis , Ácido Gálico , Minerais
3.
ACS Appl Mater Interfaces ; 16(15): 19571-19584, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564737

RESUMO

Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.


Assuntos
Anti-Infecciosos , Quitosana , Ácido Gálico/análogos & derivados , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Quitosana/química , Peróxido de Hidrogênio/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Cicatrização , Escherichia coli , Biofilmes
4.
Food Res Int ; 184: 114262, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609241

RESUMO

There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.


Assuntos
Ácido Acético , Antioxidantes , Ácido Clorogênico , Ácido Gálico , Polifenóis
5.
Methods Mol Biol ; 2798: 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587732

RESUMO

Total antioxidant capacity (TAC) is a reliable indicator of antioxidant content in animal and plant samples. The different experimental approaches available allow the determination of TAC using, as a reference, diverse compounds with recognized antioxidant capacities such as Trolox, ascorbic acid, gallic acid, or melatonin. A new portable device, named BRS (BQC redox system), is now commercially available that, through an electrochemical approach, allows the determination of TAC in a simple, fast, reproducible, and robust way. In this chapter, using this portable device, a comparative analysis of the TAC is assayed in different red, citrus, and Solanaceae fruits, several Allium species, and organs of different plant species, including Arabidopsis thaliana. The obtained results demonstrate the versatility of the BRS portable device.


Assuntos
Arabidopsis , Melatonina , Animais , Antioxidantes , Ácido Ascórbico , Ácido Gálico , Verduras
6.
J Agric Food Chem ; 72(12): 6327-6338, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484116

RESUMO

The present work aimed to characterize the phenolic and antioxidant content of the Argentinian purple maize "Moragro" cultivar. Additionally, the INFOGEST simulated in vitro digestion model was used to establish the effect of digestion on bioactive compounds. Finally, digestion samples were used to treat Caco-2 cells in the transwell model to better understand their bioavailability. Twenty-six phenolic compounds were found in purple maize cv. "Moragro", 15 nonanthocyanins and 11 anthocyanins. Several compounds were identified in maize for the first time, such as pyrogallol, citric acid, gallic acid, kaempferol 3-(6″-ferulylglucoside), and kaempferol 3-glucuronide. Anthocyanins accounted for 24.9% of total polyphenols, with the predominant anthocyanin being cyanidin-3-(6″ malonylglucoside). Catechin-(4,8)-cyanidin-3,5-diglucoside and catechin-(4,8)-cyanidin-3-malonylglucoside-5-glucoside were detected as characteristics of this American maize variety. Total polyphenol content (TPC; by the Folin-Ciocalteu method), HPLC-DAD/MSMS, and antioxidant activity [by DPPH and ferric-reducing antioxidant power (FRAP)] were evaluated throughout in vitro digestion. TPC, DPPH, and FRAP results were 2.71 mg gallic acid equivalents (GAE)/g, 24 µmol Trolox equiv/g, and 22 µmol Trolox eq/g, respectively. The in vitro digestion process did not cause significant differences in TPC. However, the antioxidant activity was significantly decreased. Moreover, the bioavailability of anthocyanins was studied, showing that a small fraction of polyphenols in their intact form was conserved at the end of digestion. Finally, a protective effect of digested maize polyphenols was observed in the Caco-2 cell viability. The results suggest that "Moragro" purple maize is a good source of bioavailable anthocyanins in the diet and an interesting source of this group of compounds for the food industry.


Assuntos
Antocianinas , Catequina , Humanos , Antocianinas/química , Zea mays/química , Antioxidantes , Células CACO-2 , Quempferóis , Cromatografia Líquida de Alta Pressão , Fenóis/química , Polifenóis/análise , Ácido Gálico , Digestão
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124109, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447443

RESUMO

In the present study, the interaction mechanism between gallic acid (GA) and α-Chymotrypsin (α-CT) was investigated by employing a series ofspectroscopic methods, computational docking and molecular dynamic (MD) simulation. Fluorescence spectra analysis indicated the formation of a stable complex between GA and α-CT, where the quenching of the fluorescence emission was predominantly characterized by a static mechanism. TheCA obtained binding constants for the α-CT-GA complex were in the order of 103 M-1, indicating the moderate binding affinity of GA for α-CT. The corresponding CD findings showed that the interaction between GA and α-CT resulted in an alteration of the protein's secondary structure. The findings of the enzyme activity investigation clearly showed that the presence of GA led to a notable decline in the enzymatic activity of α-CT, highlighting GA's function as an effective inhibitor for α-CT. The molecular docking simulations revealed the optimal binding site for the GA molecule within the α-CT structure and MD simulations confirmed the stability of the α-CT-GA complex. This research expands our comprehension regarding the behavior of enzymes in the presence of small-molecule ligands and opens avenues for food safety.


Assuntos
Quimotripsina , Ácido Gálico , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Sítios de Ligação , Ligação Proteica , Termodinâmica
8.
Acta Pharm ; 74(1): 81-99, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554388

RESUMO

This study aims to assess the chemical composition of the aqueous extract of Cistus albidus L. leaves, as well as the potential of aqueous and hydroethanol extracts of the leaves and seeds as analgesic, anti--inflammatory, and antioxidant agents. The contents of phenolics and inorganic constituents were determined in C. albidus seeds and leaves; antioxidant capacity was assessed by 3 complementary and diverse tests. The carrageenan-induced paw edema technique was used to investigate the anti-inflammatory effect in vivo, and albumin denaturation to evaluate the anti-inflammatory effect in vitro. The acetic acid-induced contortion test, the tail-flick test, and the plantar test were used to assess the analgesic effi cacy in vivo. Chemical analysis was performed by UPLC-MS/MS to quantify several phenolic compounds including catechin (1,627.6 mg kg-1), quercitrin (1,235.8 mg kg-1) and gallic acid (628. 2 mg kg-1). The ICP analysis revealed that potassium and calcium were the main inorganic components in the seeds and leaves of C. albidus. The hydroethanolic extract of the leaves showed the highest content of polyphenols/flavonoids, whereas the highest value of proantho cyanidins was detected in the aqueous extract of the seeds. All extracts showed potent antioxidant activity related to different phenolic compounds (quercetin, gallic acid, astragalin, catechin, and rutin). The aqueous extract of the leaves strongly inhibited paw edema (76.1 %) after 6 h of treatment and showed maximal inhibition of protein denaturation (191.0 µg mL-1 for 50 % inhibition) and analgesic activity in different nociceptive models. The presented data reveal that C. albidus extracts potentially show antioxidant, anti-inflammatory, and analgesic activities that could confirm the traditional use of this plant.


Assuntos
Catequina , Cistus , Antioxidantes/análise , Cistus/química , Cromatografia Líquida , Catequina/efeitos adversos , Catequina/análise , Extratos Vegetais/química , Dor/induzido quimicamente , Dor/tratamento farmacológico , Espectrometria de Massas em Tandem , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fenóis/farmacologia , Ácido Gálico/efeitos adversos , Ácido Gálico/análise , Edema/induzido quimicamente , Edema/tratamento farmacológico , Folhas de Planta/química
9.
Food Chem ; 447: 138919, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452538

RESUMO

The content of gallic acid (GA) is positively correlated with the quality grade of tea. Here, we developed a colorimetric method based on raspberry-like N-doped Mn3O4 nanospheres (N-Mn3O4 NSs) with oxidase-like activity for GA assay. Modulating the electronic structure of Mn3O4 by N doping could promote the catalysis ability, and the produced oxygen vacancies (OVs) can provide high surface energy and abundant active sites. The N-Mn3O4 NSs presented low Michaelis-Menten constant (Km) of 0.142 mM and maximum initial velocity (Vmax) of 9.8 × 10-6 M s-1. The sensor exhibited excellent analytical performance towards GA detection, including low LOD (0.028 µM) and promising linear range (5 âˆ¼ 30 µM). It is attributed that OVs and O2- participated in TMB oxidation. Based on the reaction color changes, a visualized semi-quantitative GA detection could be realized via a smartphone-based system. It could be applied for evaluating GA quality in market-purchased black tea and green tea.


Assuntos
Oxirredutases , Rubus , Oxirredutases/química , Oxigênio , Colorimetria/métodos , Ácido Gálico , Smartphone , Peróxido de Hidrogênio
10.
Food Chem ; 447: 138976, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492300

RESUMO

This study examines the feasibility of replacing SO2 in a New Zealand Sauvignon Blanc wine with a green tea extract. The treatments included the control with no preservatives (C), the addition of green tea extract at 0.1 and 0.2 g/L (T1 and T2), and an SO2 treatment at 50 mg/L (T3). Five monomeric phenolic compounds were detected in the green tea extract used for the experiment, and their concentrations ranged in the order (-)-epigallocatechin gallate > (-)-epigallocatechin > (-)-epicatechin > (-)-epicatechin gallate > gallic acid. At the studied addition rates, these green tea-derived phenolic compounds contributed to ∼70% of the antioxidant capacity (ABTS), ∼71% of the total phenolic index (TPI), and âˆ¼ 84% of tannin concentration (MCPT) of the extract dissolved in a model wine solution. Among wine treatments, T1 and T2 significantly increased the wine's colour absorbance at 420 nm, MCPT, gallic acid and total monomeric phenolic content. TPI and ABTS were significantly higher in wines with preservatives (i.e., T2 > T1 â‰… T3 > C, p < 0.05). These variations were observed both two weeks after the treatments and again after five months of wine aging. Additionally, an accelerated browning test and a quantitative sensory analysis of wine colour and mouthfeel attributes were performed after 5 months of wine aging. When exposed to excessive oxygen and high temperature (50 °C), T1 and T2 exhibited ∼29% and 24% higher browning capacity than the control, whereas T3 reduced the wine's browning capacity by ∼20%. Nonetheless, the results from sensory analysis did not show significant variations between the treatments. Thus, using green tea extract to replace SO2 at wine bottling appears to be a viable option, without inducing a negative impact on the perceptible colour and mouthfeel attributes of Sauvignon Blanc wine.


Assuntos
Antioxidantes , Benzotiazóis , Compostos Organotiofosforados , Ácidos Sulfônicos , Vinho , Antioxidantes/análise , Vinho/análise , Dióxido de Enxofre/análise , Fermentação , Cor , Chá , Ácido Gálico/análise , Fenóis/análise , Extratos Vegetais/análise
11.
J Control Release ; 368: 780-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499091

RESUMO

Designing effective nanomedicines to induce durable anti-tumor immunity represents a promising strategy for improving moderate immune stimulation. In this study, we engineered a multifunctional nanoreactor (named SCGFP NPs) for remodeling the tumor microenvironment (TME) to improve the therapeutic efficacy of immunotherapy. The core of SCGFP NPs consists of CaCO3 loaded with SN38, prepared by the gas diffusion method, and coated with a significant amount of gallic acid-Fe3+-PEG coordination polymer on the surface. In the acidic TME, SCGFP NPs explosively release exogenous Ca2+ and SN38. The SN38-induced intracellular Ca2+ accumulation and exogenous Ca2+ synergistically trigger immunogenic cell death (ICD) through sustained Ca2+ overload. The ablation of tumors with high-intensity photothermal therapy (PTT) by near-infrared (NIR) irradiation of GA-Fe3+ induces tumor cell necrosis, further enhancing ICD activation. Additionally, SN38 upregulates PD-L1, amplifying tumor responsiveness to immune checkpoint inhibitors (ICIs). This study indicates that SCGFP NPs, through the integration of a trimodal therapeutic strategy, hold enormous potential for various types of tumor immunotherapy through distinct mechanisms or synergistic effects.


Assuntos
Imunoterapia , Neoplasias , Reatores Biológicos , Difusão , Ácido Gálico/uso terapêutico , Polímeros , Microambiente Tumoral , Linhagem Celular Tumoral
12.
Food Chem ; 447: 139029, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513480

RESUMO

Hydrocolloids synthesized by gallic acid (GA) and ferulic acid (FA) grafting onto chitosan (CS) were characterized, and their effects on PhIP formation in pan-fried golden pompano were investigated. Spectrograms including nuclear magnetic resonance, Fourier transform infrared spectroscopy and ultraviolet-visible confirmed that GA and FA were successfully grafted onto CS via covalent bonds, with grafting degree of 97.06 ± 2.56 mg GA/g and 93.56 ± 2.76 mg FA/g, respectively. The CS-g-GA and CS-g-FA exerted better solubility and antioxidant activities than CS. For the 8-min pan-fried golden pompano fillets, CS-g-GA and CS-g-FA (0.5 %, m/v) significantly reduced the PhIP formation by 61.71 % and 81.64 %, respectively. Chemical models revealed that CS-g-GA and CS-g-FA inhibited PhIP formation mainly by decreasing the phenylacetaldehyde contents from Maillard reaction and competing with creatinine to react with phenylacetaldehyde. Therefore, it was suggested that CS-g-phenolic acids emerge as novel coating for aquatic products during processing and inhibit heterocyclic amines generation.


Assuntos
Acetaldeído/análogos & derivados , Quitosana , Imidazóis , Quitosana/química , Polifenóis , Antioxidantes/química , Ácido Gálico/química
13.
Int Immunopharmacol ; 131: 111898, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513573

RESUMO

Vancomycin (VCM) is the first-line antibiotic for severe infections, but nephrotoxicity limits its use. Leonurine (Leo) has shown protective effects against kidney damage. However, the effect and mechanism of Leo on VCM nephrotoxicity remain unclear. In this study, mice and HK-2 cells exposed to VCM were treated with Leo. Biochemical and pathological analysis and fluorescence probe methods were performed to examine the role of Leo in VCM nephrotoxicity. Immunohistochemistry, q-PCR, western blot, FACS, and Autodock software were used to verify the mechanism. The present results indicate that Leo significantly alleviates VCM-induced renal injury, morphological damage, and oxidative stress. Increased intracellular and mitochondrial ROS in HK-2 cells and decreased mitochondrial numbers in mouse renal tubular epithelial cells were reversed in Leo-administrated groups. In addition, molecular docking analysis using Autodock software revealed that Leo binds to the PPARγ protein with high affinity. Mechanistic exploration indicated that Leo inhibited VCM nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α inflammation pathway. Taken together, our results indicate that the PPARγ inhibition and inflammation reactions were implicated in the VCM nephrotoxicity and provide a promising therapeutic strategy for renal injury.


Assuntos
Ácido Gálico/análogos & derivados , Insuficiência Renal , Vancomicina , Camundongos , Animais , Vancomicina/metabolismo , Vancomicina/farmacologia , Vancomicina/uso terapêutico , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , PPAR gama/metabolismo , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Rim/patologia , Insuficiência Renal/metabolismo , Inflamação/tratamento farmacológico
14.
Int J Biol Macromol ; 264(Pt 1): 130562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431022

RESUMO

This study aims to formulate a stable high internal phase double emulsion (HIPDE) using soybean protein isolate (SPI), gallic acid (GA), and xanthan gum (XG). To prepare HIPDE, W1/O was formulated with the water phase dispersed in the oil phase using polyglycerol polyricinoleate (PGPR) as a stabilizer. Thereafter, W1/O dispersed in W2 (SPI solution) was used. To stabilize the HIPDE, GA was added in W1 (0 or 1 %), XG was added in W2 (0 or 1 %), and the pH of the W phases was adjusted to acidic, neutral, and basic. The samples containing GA in W1 and XG in W2 did not phase out during the storage periods and maintained a higher ζ-potential value, a higher apparent viscosity, and a more sustainable droplet compared to others. These results were derived by the interaction between SPI and XG, SPI and GA, or GA and PGPR. Physicochemical crosslinks were formed, such as gallate-derived groups, SPI-GA complexation (Michael addition, Shiff base reaction), and hydrogen bonding. In conclusion, applying the SPI, GA, and XG to HIPDE would contribute to various industries such as food, medicine, and cosmetics.


Assuntos
Ácido Gálico , Proteínas de Soja , Emulsões/química , Polissacarídeos Bacterianos/química , Água/química
15.
ACS Nano ; 18(12): 8885-8905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465890

RESUMO

As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.


Assuntos
Degeneração do Disco Intervertebral , Doenças Mitocondriais , Nanopartículas , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Manganês/metabolismo , Estresse Oxidativo , Mitocôndrias , Fenóis , Doenças Mitocondriais/metabolismo , Ácido Gálico
16.
Food Funct ; 15(6): 3130-3140, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38436057

RESUMO

Nitrite widely exists in meat products, and has the functions of bacteriostasis, antisepsis, and color development. However, in an acidic environment, nitrite will react with amines, and further generate nitrosamines with carcinogenic and teratogenic effects. Polyphenols have good antioxidant and nitrite-scavenging effects. This study aimed to evaluate the inhibitory effects of gallic acid, catechin, and procyanidin B2 on the nitrosation reaction under stomach simulating conditions and discuss the potential inhibitory mechanism. The nitrite scavenging rate and nitrosamine synthesis blocking rate of gallic acid, catechin, and procyanidin B2 under different reaction times and contents was determined by UV-vis spectrophotometry. The possible products of the reaction of the three polyphenols with nitrite were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) to reveal the mechanism of inhibiting nitrification. The results showed that the scavenging rate of the three polyphenols on nitrite and the blocking rate of nitrosamine synthesis increased with the increase of the content and reaction time. The ability of the three polyphenols to inhibit nitrosation was catechin > procyanidin B2 > gallic acid. HPLC-MS analysis showed that under simulated gastric juice conditions, the three phenolics were oxidized by nitrous acid to form their semiquinone radicals as the intermediates and nitrosated derivatives, while nitrite might be converted to ˙NO. These results suggested that gallic acid, catechin, and procyanidin B2 could inhibit nitrosation reactions in an acidic environment and may be used as food additives to reduce nitrite residues and nitrosamines in food.


Assuntos
Biflavonoides , Catequina , Nitrosaminas , Proantocianidinas , Ácido Gálico/farmacologia , Nitritos , Nitrosação , Polifenóis , Estômago
17.
J Food Drug Anal ; 32(1): 54-64, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526590

RESUMO

Increased leptin resistance and methylglyoxal (MG) levels are observed in obese patients. However, whether MG deposits contribute to leptin resistance, oxidative stress, and inflammation in peripheral tissues remains unclear. In addition, the edible fruit of Indian gooseberry (Phyllanthus emblica L.) contains abundant bioactive components such as vitamin C, ß-glucogallin (ß-glu), gallic acid (GA), and ellagic acid (EA). Water extract of Indian gooseberry fruit (WEIG) and GA has been shown to improve cognitive decline by suppressing brain MG-induced insulin resistance in rats administered a high-fat diet (HFD). Accordingly, this study investigated the functions of WEIG and GA in inhibiting MG-induced leptin resistance, oxidative stress, and inflammation in the peripheral tissues of HFD-fed rats. The results showed that MG, advanced glycation end products (AGEs), and leptin resistance accumulation in the liver, kidney, and perinephric fat were effectively restored by elevated glyoxalase-1 (Glo-1) activity after WEIG and GA administration comparable to that of alagebrium chloride (positive control) treatment in HFD-fed rats. Furthermore, WEIG and GA supplementation increased adiponectin and antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase) and decreased inflammatory cytokines (IL-6, IL-1ß, TNF-α) in the peripheral tissues of HFD-fed rats. In conclusion, these findings demonstrated that MG may trigger leptin resistance, oxidative stress, and inflammation in peripheral tissues, which could be abolished by WEIG and GA treatment. These results show the potential of P. emblica for functional food development and improving obesity-associated metabolic disorders.


Assuntos
Phyllanthus emblica , Ribes , Humanos , Animais , Ratos , Leptina , Dieta Hiperlipídica/efeitos adversos , Aldeído Pirúvico , Ácido Gálico , Inflamação
18.
Med J Malaysia ; 79(Suppl 1): 34-39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38555883

RESUMO

INTRODUCTION: Parkia speciosa Hassk., commonly known as bitter bean or twisted cluster bean, is a tropical leguminous plant species native to Southeast Asia. The plant's edible pods have been traditionally used in various cuisines, particularly in Malaysian, Thai, and Indonesian cooking. Apart from being used as a food ingredient, the pods of P. speciosa also have a range of potential applications in other fields, including medicine, agriculture, and industry. The pods are said to have several phytochemicals that hold great therapeutic values such as reducing inflammation, improving digestion, and lowering blood sugar levels. However, there is limited information on the specific phytochemical contents of the pods in the literature. Thus, the aim of this study is to quantify the total phenolic and flavonoid compounds and to determine the concentrations of four selected phytochemical compounds in the P. speciosa pod extract (PSPE). MATERIALS AND METHODS: Quantification of the total phenolic (TPC) and flavonoid contents (TFC) in PSPE were done via colourimetric methods; and the determination of the concentrations of four specific phytochemicals (gallic acid, caffeic acid, rutin, and quercetin) were done via High- Performance Liquid Chromatography (HPLC). RESULTS: Colourimetric determination of PSPE showed TPC and TFC values of 84.53±9.40 mg GAE/g and 11.96±4.51 mg QE/g, respectively. Additional analysis of the phytochemicals using HPLC revealed that there were 6.45±3.36 g/kg, 5.91±1.07 g/kg, 0.39±0.84 g/kg, and 0.19±0.47 g/kg of caffeic acid, gallic acid, rutin, and quercetin, respectively. CONCLUSION: The findings show that PSPE contains substantial amounts of caffeic acid, gallic acid, rutin, and quercetin, which may indicate its potential as antibacterial, anti-inflammatory, anti-lipid, and antiviral medicines.


Assuntos
Antioxidantes , Quercetina , Humanos , Quercetina/análise , Antioxidantes/análise , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Ácido Gálico/análise , Fenóis/análise , Fenóis/química , Rutina/análise , Compostos Fitoquímicos/análise , Extratos Vegetais
19.
Asian Pac J Cancer Prev ; 25(3): 1065-1075, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546089

RESUMO

BACKGROUND: Cervical cancer is a prevalent and deadly malignancy in females, with chemotherapy often proving ineffective due to significant side effects and the development of chemo-resistance. This study investigates the medicinal potential of Clerodendrum infortunatum linn. , a genus with approximately 500 species in the Lamiaceae family. Limited research exists on the species of Clerodendrum infortunatum and its various solvent extracts. OBJECTIVE: The study aims to assess the anti-cancer properties of different solvent extracts from this plant on human cervical cancer cells. METHODS: The study examines the plant's phytochemical components and their potential to inhibit cancer growth. Aerial parts of the plant were extracted using the Soxhlet method, and the presence of Rutin, Quercetin, and Gallic Acid in specific solvent extracts was validated through High-Performance Thin Layer Chromatography (HPTLC). In vitro assays, including MTT, Apoptosis, Cell Cycle analysis, Intracellular Reactive Oxygen Species assessment, and Gene expression PCR, were conducted to investigate the plant's anti-cancer properties further. RESULTS: The outcomes of the phytochemical assessment indicated that Rutin was predominantly present in the water extract, with quercetin being more concentrated in the decoction, and the hydro-alcoholic extract showing elevated levels of gallic acid. Notably, the decoction extract demonstrated the highest cytotoxic activity, primarily through early apoptosis and arrests in the S-phase and G2M phases. Clerodendrum infortunatum exhibited a reduction in Intracellular Reactive Oxygen Species. The gene expression analysis disclosed an impact on the BCL-2 gene. CONCLUSION: Notably, Clerodendrum infortunatum exhibited the ability to initiate early apoptosis, halt the cell cycle at the S and G2M phases, and diminish levels of reactive oxygen species significantly. The gene expression analysis revealed an influence on the BCL-2 gene. To sum up, this research underscores the encouraging cytotoxic and antioxidant attributes of Clerodendrum infortunatum, implying its potential for cervical cancer treatment.


Assuntos
Clerodendrum , Neoplasias do Colo do Útero , Humanos , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Clerodendrum/química , Neoplasias do Colo do Útero/tratamento farmacológico , Solventes , Quercetina/farmacologia , Espécies Reativas de Oxigênio , Compostos Fitoquímicos , Ácido Gálico , Rutina
20.
Int J Biol Macromol ; 265(Pt 1): 130914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492702

RESUMO

An innovative and simple nanocomposite denoted as MHNTs@PEI was synthesized for gallic acid (GA) analytical sample pretreatment. Polyethyleneimine (PEI) functionalized was binded onto magnetic halloysite nanotubes (MHNTs) to inhence adsorption capacity. MHNTs@PEI was obtained only through two steps modification (amination and PEI modification). Characterizations showed that there are layers of synthetic PEI on the tubular structure of the material and magnetic spheres on its surface, both indicating successful synthesis of the nanocomposite. Furthermore, the adsorption isotherms and kinetic modeling showed that the Langmuir model and pseudo-first-order model fit the adsorption data, respectively. MHNTs@PEI achieved an adsorption capacity of 158 mg·g-1. Overall, the abundant adsorption sites significantly improved the adsorption performance of the MHNTs@PEI. Regeneration tests demonstrated that the MHNTs@PEI exhibits effective adsorption, even after undergoing five consecutive cycles. Optimization of key parameters (ratio, volume of elution, elution time and frequency) in the process of adsorption and desorption was also conducted. The limit of detection (LOD) and that of the quantification (LOQ) were 0.19 and 0.63 µg·mL-1, respectively, and the recoveries were 95.67-99.43 %. Finally, the excellent magnetism (43.5 emu·g-1) and the adsorption feature of MHNTs@PEI enabled its successful utilization in analytical sample pretreatment through the extraction of GA from green tea.


Assuntos
Nanotubos , Poluentes Químicos da Água , Argila , Polietilenoimina/química , Ácido Gálico , Chá , Nanotubos/química , Adsorção , Fenômenos Magnéticos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...